你的位置: 深圳市永志精密五金有限公司 > 弹簧新闻 > 腐蚀环境金属弹簧失效分析

腐蚀环境金属弹簧失效分析

发布时间:2010/5/29

腐蚀环境金属弹簧失效分析(上)
1 腐蚀失效的分类
金属是最重要的工业材料。但是,金属在外界环境影响下常遭受化学和电化学的作用而引起腐蚀失效。从热力学的观点来看,除少数的贵金属(如金、铂)外,各种金属都有与周围介质发生作用而转变成离子的倾向。也就是说,金属受腐蚀是自然趋势。因此,腐蚀失效现象是普遍存在的,钢铁结构在大气中生锈,海船外壳在海水中腐蚀,地下金属管道穿孔,热电厂锅炉损坏,化工厂金属容器损坏等等,都是金属腐蚀失效的例子。据统计,1998年美国因腐蚀带来的经济损失高达2760亿美元,占美国GDP的3%以上。世界航空业因腐蚀原因造成的民航飞机的破坏占总破坏量的40%~60%,其中不乏因腐蚀失效造成的航空事故。
由于材料表面与环境介质发生化学或电化学反应而引起的材料的破坏或变质称为材料的腐蚀。腐蚀的分类方法很多,以下是两种常见的分类方法。
1.1 按腐蚀机理分类
(1)化学腐蚀 金属表面与周围介质发生化学作用而引起的破坏,其特点是在作用过程中没有电流产生。金属在干燥气体中的腐蚀,金属在非电解质中的腐蚀都属于化学腐蚀。
(2)电化学腐蚀 金属表面与周围介质发生电化学作用而引起的破坏。其特点是介质中有能导电的电解质溶液存在,腐蚀过程中有电流产生。这类腐蚀最普遍,包括:大气腐蚀、土壤腐蚀、海水腐蚀、电解质溶液腐蚀和熔融盐腐蚀。
1.2 按腐蚀破坏的形式分类
(1)均匀腐蚀 在全部或大部分暴露的表面上发生的相对均匀的腐蚀,例如铝合金在碱性溶液里发生的腐蚀。这类腐蚀容易分析和进行寿命预测,容易防护。
(2)局部腐蚀 腐蚀主要局限于微小区域中。局部腐蚀的腐蚀速度通常比均匀腐蚀大几个数量级,而且难以发现,可能导致灾难性失效,因此它的危害要比均匀腐蚀大得多。局部腐蚀又可分为以下几类:点蚀、缝隙腐蚀、电偶腐蚀、晶间腐蚀、选择性腐蚀、磨损腐蚀、应力腐蚀、氢损伤和腐蚀疲劳。
还可以按腐蚀环境分类,如前所述的海水腐蚀、土壤腐蚀、大气腐蚀、电解质溶液腐蚀、熔融盐腐蚀,以及生物腐蚀、非电解质溶液的腐蚀、杂散电流腐蚀和高温腐蚀(氧化、硫化)等等。
2 金属腐蚀的形貌和分析方法
2.1 均匀腐蚀
前面已介绍了均匀腐蚀的特点,它是从腐蚀的外观来定义的,因此仅凭外观观察就可以做出判断。均匀腐蚀(UniformCorrosion)中“均匀”一词并不很恰当,有人称为全面腐蚀(GeneralCorrosion),当然“全面”应该指被暴露的面。均匀腐蚀是最常见的、也是最简单的一种腐蚀形态。耐候钢、镁合金、锌合金和铜合金常发生均匀腐蚀,而钝化金属如不锈钢、铝合金或镍2铬合金则通常发生局部腐蚀,铝合金在碱溶液中会发生均匀腐蚀。发生均匀腐蚀的金属在化学成分、显微组织和受力状况方面在宏观尺度上是均匀的。腐蚀介质通常也是均匀的,而且可以无障碍地接触金属表面.弹簧
取决于腐蚀产物是附着在金属表面还是脱离开金属表面,发生腐蚀后的材料厚度在外观上可以增厚,也可以减薄,但剩余的金属厚度总是减薄的,有时候需要通过截面金相来测定。因此金属材料的厚度损失经常用来表征均匀腐蚀的程度。
2.2 点蚀
点蚀也是一种很常见的腐蚀形态,图1是某型航空发动机不锈钢叶片上的点蚀坑的剖面金相。这种形态的腐蚀通常发生在具有钝性的或有保护膜的金属上,而且环境的均匀腐蚀性相对较弱。点蚀难以发现,用常规的无损检测手段也难以检测,有时蚀孔的孔口被腐蚀产物覆盖,仅表现为一点微小的锈红色,很显然,这种情况下彩色照片比黑白照片更能显示蚀点。确认点蚀的方法是沿蚀孔深度方向制备金相磨片。沿纵深发展的蚀孔可能在材料绝大部分尚完整的情况下造成穿孔,引起泄漏,而危险物品的泄漏可能引发灾难性事故。蚀孔处的应力集中也可能导致断裂,图2所示是航空发动机的不锈钢叶片在蚀孔处萌生的疲劳裂纹。由于许多蚀孔弥散分布,可采用ASTMG46《点蚀的检查和评价》对腐蚀损伤进行定量评估。点蚀的生长具有自催化能力,一旦开始生长,会加速生长。蚀孔内介质与外界的介质相比,氯化物浓缩,对蚀孔内进行成分分析,通常会发现明显的氯存在。发生点蚀时,环境介质通常是静止的。不锈钢弹簧
钢铁、铜、镁、不锈钢、耐热合金、铝合金和钛合金等在大多数含有氯离子的介质中都有可能发生点蚀。含有氧化性金属阳离子的氯化物如三氯化铁、氯化铜和氯化汞等属于强烈的点蚀促进剂。
2.3 晶间腐蚀
晶间腐蚀是指晶界相或与之紧邻的区域作为阳极优先溶解,而晶内很少或没有腐蚀。发生晶界腐蚀后从材料的外观上有可能看不出任何变化。确认晶间腐蚀的方法是金相检验,抛光后无需侵蚀即可看到因腐蚀变粗变黑的晶界(图3)。发生晶间腐蚀的原因常常是在金属的热经历中曾经在某一温度段停留过一定时间,在此期间合金成分或杂质元素在晶界上富化或贫化,或者出现晶界析出物,使得晶界或晶界附近相对于晶内为阳极优先腐蚀,晶内为阴极。这种热经历称为敏化。消除敏化的措施是进行所谓稳定化处理,让晶界析出物重新溶解。焊接中焊缝两侧一定距离处的材料会正好处于敏化温度范围,接触腐蚀介质后,会在这个平行于焊缝的狭长区域中发生晶间腐蚀,称为焊缝腐蚀。构件发生晶界腐蚀后,很难用肉眼发现,但构件的强度已大大降低,在一个小载荷下就可能发生沿晶分离。
可能发生晶间腐蚀的金属有不锈钢、镍合金、铝合金和铜合金。一般地讲,含有常规碳含量(>0.04%)、且不含碳化物稳定元素钛、铌的不锈钢对晶间腐蚀敏感,把碳含量降低至0.03%以下,或添加一定量的钛、铌,则可降低敏感性。
变形铝合金有一种特殊形式的晶间腐蚀———剥层腐蚀或简称剥蚀。当铝合金被轧制、锻压或挤压成型材时,弹簧厂,晶粒变形成为长条状,大量的晶界相互平行,并平行于材料的长度方向。当晶间腐蚀沿着长度方向进行时,材料被一层一层地分离。腐蚀产物堆积在晶界上,如同在晶界上打入了无数的小楔子,使构件在厚度方向发生膨胀,因此,构件表面鼓包和铆钉头断掉都是剥层腐蚀的症状。对剥蚀的确认方法仍然是金相检验。
3 应力腐蚀断裂的失效分析
3.1 应力腐蚀的条件
应力腐蚀断裂(简称SCC或应力腐蚀)是对SCC敏感的材料在环境和拉应力的同时作用下发生的脆性断裂。这里特别强调共同作用,先受拉应力再去掉应力单纯受腐蚀或先腐蚀后再去除腐蚀环境单纯受拉应力所引起的破坏都不是应力腐蚀断裂。应力腐蚀断裂是一种亚临界裂纹生长现象,分为裂纹萌生、裂纹亚临界扩展和剩余截面最终过载断裂三个阶段。发生SCC时,环境的腐蚀性较弱,应力水平也低于材料的屈服强度,因此材料表面一般没有明显的腐蚀现象,材料也没有塑性变形,加之SCC裂纹很纤细,很难被发现,从而易发生突发性的断裂,造成灾难性后果。工程实践表明,SCC是很常见的同时也是很危险的一种断裂失效模式。
发生SCC需要同时满足两个条件:
(1)拉伸应力 虽然有学者认为在压应力作用下也能发生SCC,但是绝大多数SCC发生在拉应力作用下。应力可以来自工作载荷、冷加工或热加工的残余应力、装配应力及腐蚀产物的楔力等。对于光滑试样或工件存在一个SCC门限应力,对于预裂试样或工件,存在一个SCC门限应力强度因子KⅠSCC,低于它们则不发生SCC。
(2)特定的材料/环境组合 SCC的一大特点是需要材料和环境的特定组合。表1列出了常见的能发生SCC的材料/环境组合。SCC通常只发生在合金上,纯金属很少发生。
航空涡轮发动机高压涡轮段的材料主要是镍基或钴基高温合金,材料承受着高温、熔融态的氯化物或硫化物的腐蚀以及工作应力。在高温、腐蚀介质和应力三者的共同作用下,可能发生熔融盐的SCC。这一失效机理曾造成近年来某型发动机多次发生涡轮叶片断裂。
3.2 应力腐蚀断口的特征
SCC裂纹和断口有一些独特的特征,按宏观和微观分别归纳如下,所谓宏观是指靠肉眼或光学放大的尺寸范围内,微观是指应用扫描电子显微镜进行观察的尺寸范围内。需要注意的是,这些特征只是多数SCC裂纹和断口的一般规律,某些材料/环境组合发生SCC时,会有一些例外。
3.2.1 SCC的宏观特征
由于SCC的发生需要腐蚀介质的参与,因此SCC裂纹多萌生于材料表面,裂纹源一般为局部腐蚀(比如点蚀或缝隙腐蚀)的蚀坑或其它类型的裂纹(如焊接和热处理裂纹)。SCC裂纹在宏观上是脆性的,即使原本韧性很好的材料发生SCC时也是脆性的,宏观上很少有塑性变形。微观上裂尖塑性变形很小,裂尖尖锐,导致很大的应力集中。许多SCC裂纹在宏观上分叉,裂纹平面与主应力基本垂直。与疲劳断裂相似,从裂纹亚临界扩展区尺寸与过载瞬断区尺寸的比例关系可以推测应力水平的高低。由于环境条件的变化或SCC/过载的交替进行,SCC断口上会出现海滩花样,应与疲劳区分开来。由于SCC断口常常由于腐蚀或介质污染而变色,这为区分SCC与疲劳提供了一条途径。
SCC主裂纹或主断口附近常出现表面裂纹,这些表面裂纹基本平行于主断口,其机理也是SCC。在主断口上还会出现二次裂纹,图6就是垂直于主断口的剖面所看到的二次裂纹,仍然呈现分叉、沿晶的特点。因此精密弹簧,当主断口因腐蚀无法观察的情况下,打开表面裂纹或垂直于断口作剖面也许可以发现SCC的特点。由于表面裂纹和二次裂纹没有打开,不受试样清洗的影响,裂缝里保存了在发生SCC时的介质成分,某些组分还可能被浓缩,因此,对裂缝里进行微区成分分析可以较好地了解当时介质的真实成分。
3.2.2 SCC的微观特征
SCC裂纹在材料中的路径有沿晶,也有穿晶,还有混合的,取决于材料、热处理和环境。铝合金、低碳钢、高强钢和α黄铜等材料的SCC断口为沿晶的,而镁合金和γ不锈钢出现穿晶分叉的SCC裂纹。沿晶断口常被轻微腐蚀或被少量腐蚀产物覆盖,以致电镜下沿晶小刻面的平面不光滑、棱角不锐利(图7),或者小刻面上有腐蚀坑,严重时小刻面上有腐蚀沟槽,即所谓“核桃纹”。用AC纸粘取断口表面的附着物后,可用电子探针、能谱或X射线荧光分析等进行成分分析,从中获取环境成分信息。穿晶SCC的断口呈现解理花样。由于腐蚀,SCC断口上有时会出现“泥纹花样”,这实际是腐蚀产物干燥后的龟裂,应注意区分是断裂后断口的腐蚀还是在腐蚀和应力共同作用下的断裂,后者才是SCC。